Pilot: Single-Cell mRNA-seq

- Fluidigm C1 platform (Kelley lab)
- “Barnyard” experiment - mixing of human and mouse cells to test ability of platform to isolate single cells
 - Human: islets that are de-differentiated into mesenchymal stem cells, then induced to form islet-like clusters
 - Mouse: INS1 cells (mouse beta cell line)
Experimental Set-Up

- Medium-sized (10-17 um) Fluidigm 96-site IFC
 - Full-length mRNA-seq
 - *Before* doublet problem was addressed
- Cells stained for live/dead + species-specific markers
- ERCC spike-ins
- Batch 1: Smart-seq v2 chemistry
- Batch 2: Smart-seq v4 chemistry
Analysis

• Lori and Mike (Kelly) each scored each well by eye (from microscopy) - number of cells, species

• Reads quantified using pseudo-count method in Kallisto against merged human-mouse-ERCC transcriptome

• Pseudo-counts filtered to remove ECs with both mouse and human transcripts and with high missingness (47k human and 18k mouse ECs remaining)
Next Steps

• Sub-clustering of human and mouse cells
 • INS1 should be fairly homogeneous
 • Human ICAs may subdivide? - identify marker genes for each cluster, compare to known
 • Next experiment: single-nucleus sequencing using small IFC (5-10 um) to solve cell size heterogeneity problem
Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain

Benjamin Lacar1, Sara B. Linker1,*, Baptiste N. Jaeger1,*, Suguna Rani Krishnaswami2, Jerika J. Barron1, Martijn J.E. Kelder1, Sarah L. Parylak1, Apuá C.M. Paquola1, Pratap Venepally8, Mark Novotny1, Carolyn O’Connor1, Conor Fitzpatrick1, Jennifer A. Erwin3, Jonathan Y. Hsu3, David Husband1, Michael J. McConnell3, Roger Lasken2 & Fred H. Gage3

RNA-sequencing from single nuclei

Rasheil V. Grindberg4,*, Joyclyn L. Yee-Greenbaum5,*, Michael J. McConnellb,*, Mark Novotny9, Andy L. O’Shaughnessy7,*, Georgina M. Lambert5, Marcos J. Araúzo-Bravo6, Jun Lee5, Max Fishman9, Gillian E. Robbins5, Xiaoying Lin1, Pratap Venepally9, Jonathan H. Badger9, David W. Galbraith5, Fred H. Gage3,4, and Roger S. Lasken8,4

*J. Craig Venter Institute, San Diego, CA 92121; bDepartment of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908; School of Plant Sciences and BIOS Institute, University of Arizona, Tucson, AZ 85721-0036; cDepartment of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany; dLeGene Biosciences, San Diego, CA 92126; Applied Biosystems, Life Technologies, Foster City, CA 94404; eJ. Craig Venter Institute, Rockville, MD 20850; and fSalk Institute for Biological Studies, La Jolla, CA 92037-1002

Contributed by Fred H. Gage, October 23, 2013 (sent for review August 12, 2013)